
Friday Worksheet

Name:

Analytical chemistry and organic 9

- 1) An 0.082 g sample of an unsaturated hydrocarbon contains 2 carbon to carbon double bonds. This sample reacted fully with 0.320 grams of bromine (Br₂) solution. What is the name of this hydrocarbon?
 Since one molecule of Br₂ is added across each double bond, we can say that for every mol of the hydrocarbon two mol of Br₂ is required.
 Step 1 find the mol of Br₂
 => 0.320 /160 = 0.002
 Step 2 find the mol of the hydrocarbon
 => 0.001
 Step 3 find the formula mass of the hydrocarbon
 => Fm = m/n = 0.082/0.001 = 82
 Step 4 identify the unsaturated hydrocarbon
 Hexadiene
- 2) Give the systematic name of:
 - a) Isoleucine = 2-amino-3-methylpentanoic acid
 - b) Threonine = 2-amino-3-hydroxybutanoic acid
- 3) Draw a reaction pathway on a separate piece of paper for the formation of hexyl pentanoate from hex-1-ene and pent-1-ene. Show the structural formulae of all reactants and the reagents and conditions used for each reaction.

4) Fill in the table below

Name	Structural formula	Semi-structural formula
2-amino-3-hydroxypropanoic acid	но он ИН2	CH(OH)CH(NH₂)COOH
3-methylbutan-2-amine	H ₃ C H ₃ C H ₁ C H ₃ C H ₃ C	CH ₃ CH ₂ (CH) ₄ CH(NH ₂)CH ₃
3-amino-2-hydroxyhexanoic acid	HO OH NH ₂	CH ₃ CH ₂ CH ₂ CH(NH ₂)CH(OH)COOH

- 5) The diagram below is a simplified illustration of a protein. This protein consists of 62 amino acids arranged in two individual chains linked by disulfide bridges.
 - a) How many amide links are present in one molecule of the protein?

In one protein chain containing n amino acids there are n-1 amide links. Since there are two chains there will be 2 less amide

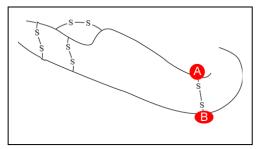
Since there are two chains there will be 2 less amide links for the total number of amino acids. Hence 60 amide links.

- b) Identify amino acids A and B Cysteine and cysteine
- c) Using the protein shown on the right clearly explain the difference between
 - i. Primary structure

Primary structure is the chain of amino acids linked by covalent bonds.

ii. Secondary structure

The spiral helix and beta pleated sheets formed by the attraction between the C=O and N-H of neighbouring amide links. The secondary structure is due to hydrogen bonding .


iii. Tertiary structure

The folding of the secondary structure due to interactions between the amino acid side chains. The type of bonding includes, H-bonding, dispersion, ionic and covalent.

iv. Quaternary structure

The **quaternary protein structure** involves the grouping of two or more tertiary structures of individual **protein** chains into a final specific unit. A variety of bonding interactions hold the quaternary structure in place, including hydrogen bonding, ionic, and disulfide bonds.

- 6) Complete the equations below using structural formulae to represent the products and name all the possible products.
 - 1- CH₃CHCHCH₃ (I) + Br₂(aq) => 1,2-dibromopropane
 - 2- CH₂CHCH₂CH₂CH₃(I) + HCl(g) => 2-chloropentane or 1-chloropentane

